
1 23

Designs, Codes and Cryptography
An International Journal
 
ISSN 0925-1022
 
Des. Codes Cryptogr.
DOI 10.1007/s10623-012-9670-x

AES side-channel countermeasure using
random tower field constructions

Alexis Bonnecaze, Pierre Liardet &
Alexandre Venelli



1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.



Des. Codes Cryptogr.
DOI 10.1007/s10623-012-9670-x

AES side-channel countermeasure using random tower
field constructions

Alexis Bonnecaze · Pierre Liardet · Alexandre Venelli

Received: 23 January 2011 / Revised: 21 March 2012 / Accepted: 26 March 2012
© Springer Science+Business Media, LLC 2012

Abstract Masking schemes to secure AES implementations against side-channel attacks
is a topic of ongoing research. The most sensitive part of the AES is the non-linear SubBytes
operation, in particular, the inversion in G F(28), the Galois field of 28 elements. In hard-
ware implementations, it is well known that the use of the tower of extensions G F(2) ⊂
G F(22) ⊂ G F(24) ⊂ G F(28) leads to a more efficient inversion. We propose to use a
random isomorphism instead of a fixed one. Then, we study the effect of this randomization
in terms of security and efficiency. Considering the field extension G F(28)/G F(24), the
inverse operation leads to computation of its norm in G F(24). Hence, in order to thwart
side-channel attack, we manage to spread the values of norms over G F(24). Combined with
a technique of boolean masking in tower fields, our countermeasure strengthens resistance
against first-order differential side-channel attacks.
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1 Introduction

Securing cryptographic primitives on embedded devices is still a challenge today. One of
the major threats in constrained environment is side-channel attacks introduced by Kocher et
al. in [16]. Such attacks can be performed easily by an attacker with little knowledge about
implementation details. Differential side-channel attacks exploit relationships between the
processed data by the device and the side-channel leakage measured by an attacker. If we
consider power consumption as the side-channel leakage, a power model can be assumed
by the attacker [4,21]. Using this model, he can produce hypothetical values predicting the
leakage information at several moments in time. These predictions are compared to the real
power consumption of the device. The comparison is done using various statistical tests,
for example the distance of means [16], the Pearson correlation factor [4] or, more recently,
mutual information [13].

The advanced encryption standard (AES) is the standard for symmetric encryption [25],
replacing the older data encryption standard (DES) [24]. It is used in many embedded systems
and therefore its side-channel resistance has been studied in details over the years. Research-
ers have proposed different types of countermeasures, some more practical than others. The
most general method to counter side-channel attacks is to randomize the intermediate values
of the cryptographic algorithm. As the side-channel leakage is dependent on the values pro-
cessed by the smart cards, the data is then de-correlated from the side-channel observations.
In the case of the AES algorithm, several countermeasures have been proposed based on
masking intermediate values of the AES. Most of them are concentrated on the SubBytes
transformation which is the only non-linear transformation involved in the AES.

The most efficient SubBytes hardware implementation uses composite field arithmetic.
Consequently, techniques introduced in [30,28,38] compute the SubBytes operation of the
AES in a subfield of G F(28). In these articles, the construction of the subfield is fixed
arbitrarily whereas in [34] the authors propose to use a construction that minimizes the
computation cost of composite field operations. In this work, we randomize the tower field
construction (TFC) G F(2) ⊂ G F(24) ⊂ G F(28) and study its impact on the side-channel
resistance of the AES. When computing the inverse map in G F(28), we have, in our case,
to compute the norm in the field extension G F(28)/G F(24). Hence, in order to thwart side-
channel attack, the distribution of the masked norm values for a given element of G F(28),
by considering all representations in use, should spread uniformly over G F(24). We intro-
duce efficient methods to reach this requirement and analyze their efficiency from both the
implementation and the side-channel resistance sides.

The paper is organized as follows. In Sect. 2, we give a brief description of the AES.
Section 3 summarizes the major masking methods proposed for AES. Our proposition is
based on a random TFC which is studied in Sect. 4. The effect of this randomness on norm
values is analyzed in Sect. 5. A theoretical analysis of the security of our proposition against
side-channel attacks leads to additional masking methods. In Sect. 6, we report the results of
a differential power analysis attack on our propositions. We conclude this article in Sect. 7.

2 AES

We give a brief description of the AES round function, omitting the key schedule. More
details can be found in [25]. The AES is defined for 128-bit blocks and key sizes 128, 192
and 256 bits. The 128-bit plaintext is viewed as a 4 × 4 byte matrix, called state, bytes
corresponding in some way to elements of G F(28).
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The AES operates on states by iterating transformation rounds. The initial round consists
in the AddRoundKey operation, the next rounds consist in applying successively the transfor-
mations SubBytes, ShiftRows, MixColumns and AddRoundKey, but the last round omits the
MixColumns transformation. AddRoundKey is a bit-wise XOR operation between the state
and the round key. The round keys are derived from the original key with the Key Expansion
algorithm. ShiftRows is a cyclic shift operation on each of the four rows of the state. The
first row is unchanged, the second is cyclically shifted by one byte to the left, the third by
two bytes and the fourth by three bytes. MixColumns considers each column of the state
matrix as coefficients of a degree three polynomial and multiplies them modulo z4 + 1 with
a fixed polynomial. SubBytes is the main building block of AES regarding the side-channel
aspect. Each byte of the state matrix is replaced by its substitute in an SBox. This SBox is the
composition of two transformations: an inversion in G F(28) and an affine transformation.

3 Related work on masking methods for AES

The goal of a side-channel countermeasure is to make the power consumption of a device
as independent as possible of the intermediate values of a cryptographic algorithm. Masking
techniques have been extensively studied in the literature. The general principle of a masked
implementation is to replace intermediate values v by some combinations C(v,m) of v and
a random value m. Currently, v and m are binary strings and C(v,m) = v ⊕ m corresponds
to the bit-wise XOR addition.

Higher-order differential power analysis (HODPA) is a class of side-channel attacks pro-
posed to counter masking methods. When classical DPA analyzes the information of one
point in time of a power consumption curve, the principle of HODPA is to combine different
relevant points. For example, if an attacker is able to find the point in time when the mask
value r is generated by the device and the point when v′ is computed, he can use these
informations to retrieve the correct value v. In response, higher-order masking techniques
are proposed. However effectively counteracting n-order side-channel attacks is still a diffi-
cult task. In this study, we are only concerned with first-order attacks as they are the most
practical.

The only non-linear part of the AES is the inversion over G F(28) in the SubBytes oper-
ation. Using a masking method, usually we have to compute the inverse of the input v + r1

such that we obtain v−1 +r2 with r1, r2 two random values. We review in the following some
of the main masking schemes. We first present masking techniques that apply to generic AES
software implementations. Then, we consider the methods using tower fields. These methods
are particularly suitable for efficient hardware implementations.

The transform masking method (TMM) [1]. The principle is to transform a boolean mask
v+ r1 into a multiplicative mask v.r ′, perform the inversion and transform back into a bool-
ean mask v−1 + r2. Trichina et al. [37] simplify the complexity of the TMM method by
considering that the masks r1 and r2 are equal. This method is sensitive to the zero value
side-channel attack. If v = 0 in G F(28) then no multiplicative mask can conceal this special
value.

Embedded multiplicative masking [14]. The authors propose a solution to the zero value
problem. The idea is to embed the field G F(28) into the ring

Rk = G F(2)[x]/(pq) ∼= G F(28)× G F(2k)
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where p is the eighth-degree AES polynomial and q is an irreducible polynomial, co-prime
to p, of degree k. Consider the random mapping:

ρ : G F(28) → Rk

v �→ v + r p mod pq,

where r is a randomly chosen polynomial of degree less than k. Then the value v = 0 in
G F(28) is mapped into 2k possible values in Rk and should be less noticeable for an attack.

Random-value masking method [20]. Let us consider the case when a precomputed lookup
Sbox table is used to compute the SubBytes operation. Messerges’s method consists in re-
masking lookup tables with the current mask used with the value. As the mask needs to
change in order to thwart DPA, the tables are recomputed within the AES algorithm. In [15],
Itoh et al. simplify the previous idea and propose to use only limited sets of fixed precomputed
mask values. This countermeasure is very costly in time.

Masked modular exponentiation [3]. The authors’ idea is to compute the inverse of v in
G F(28) as v254 using a special square-and-multiply algorithm. The authors propose the algo-
rithms perfectly masked squaring and perfectly masked multiplication in order to obtain, at
the end, the inverse masked with a boolean random value. This method is particularly costly
in time.

Masking using log tables [36]. Let γ be a generator of G F(28). Then all pairs (α, i) such
that α = γ i for 0 ≤ i ≤ 255 are precomputed and stocked into two tables defined such as

log(α) = i and alog(i) = α.

Operations in G F(28) can be implemented using the log and alog tables. In particular, the
propagation of the mask in the computation of the inverse is easier. Let v′ = v + r be the
value vmasked with a random r that has to be inverted. Then with v = γ i and r = γ j one has
v′−1 = (γ i )−1(γ j−i +1)−1. Hence, the mask after the inversion becomes (γ j−i +1)−1. This
method needs to store log tables in memory. This can be intractable in embedded systems.

Resistant Sbox based on Fourier transform [32]. First identify the G F(2)-vector space
G F(2)n to G F(2n) from some base and then to {0, . . . 2n − 1}. Now, any element X in
G F(2n) can be written as a column vector X = t (xn−1, . . . , x0) and also identified to the
integer val(X) = ∑

0≤k<n 2k xk . Finally, any map F : G F(2n) → G F(2n) should be iden-
tified to the integer-valued map X �→ val(F(X)) still denoted by F in spite of possible
confusion. The classical integer-valued scalar product A · X = ∑

0≤k<n Ak xk on G F(2n)

allows to identify the additive group G F(2n) to its dual and consequently the discrete Fourier
transform (DFT) F̂ of the function F is also defined on G F(2n) by

F̂(A) =
∑

X∈G F(2n)

F(X)(−1)A·X .

Notice that F̂ is Z-valued and its DFT leads to the classical inversion formula

F(X) = 1

2n

∑

A∈G F(2n)

F̂(A)(−1)A·X .

Prouff et al. [32] observe that if the function F denotes a SBox, the above relation can be used
to compute a masked SubBytes operation. However, Coron et al. in [9] show a side-channel
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weakness in such computation and proposes the following masked transformation that uses
four random masks R1, R2, R3, R4 from G F(2n) (identified to G F(2)n). Let X be a sensitive
vector and let X̃ = X ⊕ R1 be the masked vector by R1, then the masked DFT takes the
input X̃ and gives the output F ′ := (−1)(X̃⊕R2).R1 F(X) + R3 mod 2n computed from the
equation

F ′ =
⎢
⎢
⎢
⎣ 1

2n

(
R′ +

∑

A∈G F(2n)

F̂(A)(−1)(A·X̃)+(R1·(X̃⊕A⊕R2)) mod 22n
)
⎥
⎥
⎥
⎦

where R′ = 2nval(R3)+ val(R4). In [17], Li et al. show that there is still a flaw in Coron’s
SBox algorithm due to a biased mask.

Random isomorphisms on the AES field [33]. The authors suggest the use of random rep-
resentations of elements in G F(28) as a protection against side-channel attacks. There exist
256−16 elements in G F(28) which are of degree two over the subfield G F(24) and so of
degree eight over G F(2). Therefore, there exist 240 possible representations of the field
G F(28) to be used in AES. The principle is to randomly choose, at the beginning of the
encryption, one of these representations, map the input plaintext and adapt round functions
to the new representation. The output of the encryption is then mapped in the original AES
field. This method requires to change AES round function for each representation and hence
is costly in time.

In the following, we consider methods that combine arithmetic of subfields. This method
is efficient for hardware implementation since arithmetic on such smaller fields is easily
implemented in hardware.

Boolean masking in tower field [7,29,30]. The tower field

G F(2) ⊂ G F(22) ⊂ G F(24) ⊂ G F(28)

was introduced as a speed improvement for the AES [38]. Computation of the inverse is trans-
ferred to a subfield of G F(28). Protecting this operation is also assured at the lower level. In
[30], Oswald et al. proposed a masked inversion technique into G F(24) for hardware imple-
mentations. A software version of this method is presented in [28] with G F(28) viewed
as an extension G F(24)[θ ] of G F(24) where θ is quadratic over G F(24) with irreducible
polynomial of the form z2 + z + λ. The inversion operation is computed by appropriated
combinations of four lookup tables whose entries depend on masked values.

We note that although Oswald et al. proved that, with their scheme, all intermediate values
are masked, the study is only done at the algorithmic level. In a hardware implementation of
this countermeasure Mangard et al. [18] show that it can be vulnerable to first-order side-chan-
nel attacks. The weakness is due to glitches in complementary metal oxide semiconductor
(CMOS) circuits. In this paper, we do not treat this problem. Specific solutions are presented
in [26,31].

4 Random TFC

First, we fix some useful notations. For a given irreducible polynomial Q(z) over the field
G F(2) we set G F2(Q) := G F(2)[z]/(Q(z)) and if P(z) is an irreducible polynomial over
G F2(Q) we set G F2(Q, P) := G F2(Q)[z]/(P(z)) in order to exhibit explicitly the tower
construction.
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4.1 The SubBytes transformation

The irreducible polynomial R(z) = z8 + z4 + z3 + z + 1, specified in the AES, is used
to create the Galois field G F(28) := G F2(R). This construction is referred as the standard
definition of the field of 28 elements and we associate the basis Σ := [ζ 7, ζ 6, . . . , ζ, 1],
referred as the standard basis, where ζ is the class of z modulo (P(z)). Consequently, any
element x = x7ζ

7 + x6ζ
6 + · · · + x0 of G F(28) is represented in AES algorithm by the

8-bits column vector X := t [x7, . . . , x0] (the transpose of the row vector [x7, . . . , x0]), hence
x = ΣX . Practically, x is identified to the integer x727 + x626 + · · · + x0. The Frobenius
automorphism is intrinsically given in any field extension of G F(2) by σ : x �→ x2. It is
represented in the standard basis by the matrix

S := Σ−1 ◦ σ ◦Σ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0
0 1 1 0 0 0 0 0
1 0 0 1 0 1 0 0
1 1 1 1 0 0 0 0
0 0 1 0 0 0 1 0
1 1 0 1 0 0 0 0
0 1 0 1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The SubBytes operation is the only non-linear round step of the cipher. It takes as an input a
vector x from G F2(R)which is transformed by composing successively the following maps:

1. the multiplicative inverse in G F2(R), given y = x−1, but fixing the inversion of x = 0
to y = 0,

2. the affine transformation

y �→ ω(y)+ δ (1)

defined in the standard basis by ΩY +Δ with:

Ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and tΔ = [
0 1 1 0 0 0 1 1

]
. (2)

In the original description of AES the SubBytes is performed by means of a lookup table
(the so-called Rijindael S-box). Here we do not use such a method of computation since it
takes too much memory size for masking power consumption and so computation on-the-fly
is preferred.

4.2 TFC of G F(28) and inversion problem

Notice that calculation of the inverse in G F2(R) requires the inversion of a seventh-degree
polynomial modulo a eighth-degree polynomial. This operation is very costly compared to
the inversion of a first-degree polynomial modulo a second-degree one, even if the coeffi-
cients are taken from the subfield G F(24). Consequently, the field G F(28) is constructed
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using tower extensions G F2(Q, P) where Q denotes a biquadratic irreducible polynomial
over G F(2). Notice that there are three possible polynomials Q.

Let P(z) := z2 +ψz +λ be any irreducible quadratic polynomial over the field G F2(Q).
There are 120 possible such polynomials P . Now, G F(28) is achieved as the quotient
G F2(Q, P) = G F2(Q)[z]/(P(z)). As usual, each element of G F2(Q) is canonically iden-
tified in G F2(Q, P) so that G F2(Q) is viewed as a subfield of G F2(Q, P). Let α be the
natural root of P(z), that is to say the class of the monomial z modulo (P(z)). Then [α, 1]
is a G F2(Q)-basis and it is convenient to write elements of G F2(Q, P) as the sum aα+ a′.
Recall that the multiplicative law (depending upon P , but not figured out) is given by the
formula:

(aα + a′)·(bα + b′) = (ψab + ab′ + a′b)·α + (λab + a′b′).

The efficiency of TFC of type F((22)2)2 , in the AES case, has been already studied in detail.
In [23], the authors adopt polynomials basis while Canright [6] uses normal basis. Recently,
Nogami et al. [27] propose mixed bases. Our constructions lead to different basis. In fact,
let θ be the natural root of Q(z) in G F2(Q), that is to say θ is the class of z in G F2(Q) =
G F(2)[z]/(Q(z)), then, we consider the so-called natural G F(2)-basis

Ξθ,α := [θ3α, θ2α, θα, α, θ3, θ2, θ, 1]
that sums up our construction of G F2(Q, P).

The Frobenius automorphism of the extension G F2(Q, P)/G F2(Q) is σ 4. The conjugate
over G F2(Q) of α being α + ψ , the conjugate over G F2(Q) of aα + a′ is aα + ψa + a′.
The norm NP : G F2(Q, P) → G F2(Q) is by definition the product of conjugates (over
G F2(Q)). An easy calculation gives

NP (aα + a′) = λa2 + ψaa′ + a′2. (3)

Finally, the inverse of aα + a′ can be written as

(aα + a′)−1 = (aα + ψa + a′)NP (aα + a′)−1. (4)

Once G F2(Q, P) is constructed, let

μ : G F2(Q, P) → G F2(R) (5)

denote any field isomorphism. Let y ∈ G F2(R). Our goal is to compute y−1 from the com-
posite field G F2(Q, P) by using μ, that is to compute (μ−1(y))−1, so that the SubBytes
function (Eq. 1) is given by

SubBytes(y) := ω ◦ μ((μ−1(y))−1)+ δ. (6)

4.3 Choice of polynomials Q(z) and P(z)

There are 3 × 120 possible pairs (Q(z), P(z)) that build G F(28) as G F2(Q, P) but in
practical applications we do not select all of them.

Choice of Q(z). The biquadratic polynomial Q(z) is chosen primitive. There are two such
polynomials, namely z4 + z + 1 and z4 + z3 + 1. We fix our choice of Q(z) as the operations
of multiplication, squaring and inverse in G F(24) are generally either given by precomputed
lookup tables or by hardware modules. With the above notations, by primitivity of Q(z),
all invertible elements of G F2(Q) are of the form θk with k ∈ {0, . . . , 14}. Computation of
multiplication, square and inversion in G F2(Q) depend on this polynomial.
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Choice of P(z). Irreducible polynomials P(z) := z2 +ψz +λ are taken among the 64 (i.e.,
ϕ(255)/2) primitive polynomials. We will also restrict our choice to primitive polynomials
with ψ = 1. There are exactly four such polynomials and they are conjugate by the Galois
group action on λ. Since z2 + z + θ7 is one of them, all others are z2 + z + θ14, z2 + z + θ13

and z2 + z + θ11.

Remark 1 In [38], the authors select Q(z) = z4 + z + 1 and P(z) = z2 + z + θ11 where θ
(in G F2(R)) is a root of Q(z), whereas in [34] the authors choose the same Q(z) but with
P(z) = z2 + z + θ14. In our case, P(z) is chosen randomly.

4.4 Finding isomorphisms between G F2(Q, P) and G F2(R)

In this subsection we explain the way to represent any isomorphism (Eq. 5) by matrices M
and in the next subsection we compute one matrix M from a concrete example.

With the above choice of P(z), its root α becomes a primitive element in G F2(Q, P).
Consequently, a simple way to construct an isomorphism μ (Eq. 5) is to map α to a primitive
element γ of G F2(R) such that the field isomorphism holds. In order to respect the multipli-
cative law, we introduce the map f : G F2(Q, P) → G F2(R) defined by f (αi ) = γ i . This
map is linear if and only if α and γ are roots of the same primitive polynomial over G F(2) or,
equivalently, the Zech’s logarithms (also called Jacobi’s logarithms) Lα and Lγ correspond-
ing to α and γ respectively are identical. This equality means that for all i ∈ {1, . . . , 255} the
equality αi +1 = αr (i.e., r = Lα(i)) is sent to the equality γ i +1 = γ r (i.e., r = Lγ (i)). An
algorithm based on this fact is proposed in [34]. But in the case of the Galois field G F(28),
it is enough to verify only that α + 1 = αa (a = Lα(1)) is sent to γ + 1 = γ a resuming the
proof that f is linear by verifying only the equality

f (α + 1) = γ + 1.

This fact is a straightforward corollary of the following theorem.

Theorem 1 Let α and γ be two primitive elements of G F(28) and let Lα , Lγ be their
corresponding Zech’s logarithms. Then α and γ are conjugate if and only if Lα(1) = Lγ (1).

Proof The proof is obtained by computer calculation. First recall that two conjugate primi-
tive elements give rise to the same Zech’s logarithm. Now, computation of the values Lζ (1)
when ζ runs in the 16 conjugate classes of primitive elements leads to 16 distinct values. ��
Remark 2 The same theorem holds if we replace G F(28) by G F(2n) with 1 ≤ n ≤ 9 and
n = 11, 13.

Once μ is constructed, any field isomorphism from G F2(Q, P) to G F2(R) is of the form
μk := σ k ◦ μ (0 ≤ k ≤ 7) that maps α to the conjugate σ k(γ ) of γ . In fact, one has the
commutation formula

σ ◦ μ = μ ◦ σ , (7)

where σ in the right member of the equality acts in G F2(Q, P). Therefore,μk = σ i ◦μ◦σ j

with i + j = k.

4.5 Matrices representing isomorphisms

By definition, the matrix

Mμ(θ),μ(α) = Σ−1 ◦ μ ◦Ξθ,α

123

Author's personal copy



AES side-channel countermeasure using random tower field constructions

represents μ : G F2(Q, P) → G F2(R) in the above basis Ξθ,α : G F(2)8 → G F2(Q, P)
and Σ : G F(2)8 → G F2(R). Also Sk Mμ(θ),μ(α) represents σ k ◦ μ in the same bases.

Let τ be an automorphism of G F2(Q, P). Replacing θ by τ(θ) and P(z) := z2 +ψz +λ
by Pτ (z) := z2 + τ(ψ)z + τ(λ) leads to the basis Ξτ(θ),τ (α) = τ ◦ Ξθ,α . Therefore, due
to commutation formula (Eq. 7), the matrix representing μ in the bases (Ξτ(θ),τ (α),Σ) is
Sk Mμ(θ),μ(α) with σ k = τ . We may also keep θ fixed but replace α by its conjugate α′ over
G F2(Q). In that case, we obtain the basis Ξθ,α′ = σ 4 ◦Ξθ,α and the matrix representing μ
after this change is S4 Mμ(θ),μ(α). Combining these changes of basis, we see that all matrices
M that occur in the above representations of isomorphisms μ with all possible primitive
polynomials P(z) (or with restriction to only primitive polynomials of the form P1,λ if nec-
essary) are practically constructed as the following. Choose in G F2(R) a root ξ of Q(z),
choose a quadratic primitive polynomial Pψ,λ(z) = z2 + ψz + λ and choose in G F2(R) a
root γ of Pψ,λ(z). Now build the G F(2)-basis

Lξ,γ := [ξ3γ, ξ2γ, ξγ, γ, ξ3, ξ2, ξ, 1]

of G F2(R). Therefore, the associated conversion matrix M of the basis Σ to the new basis
Lξ,γ is by definition

Mξ,γ := Σ−1 ◦ Lξ,γ

and the linear map μ : G F2(Q, P) → G F2(R) that sends the basisΞα,θ onto the basis Lξ,γ
(with μ(α) = γ , μ(θ) = ξ ) is, by construction, an isomorphism (which is represented by
Mξ,γ in the bases (Ξθ,α,Σ)).

Since we have fixed the choice of Q(z), by taking all possible quadratic primitive polyno-
mials Pψ,λ(z) = z2 +ψz + λ, we get 64 × 8 distinct conversion matrices Mi (1 ≤ i ≤ 512)
issued from the above constructions. Restriction to polynomials P1,λ(z) reduces this number
to 32, which is quite enough for our purpose as we shall see after performing side-channel
simulation attacks.

4.6 A worked example

Construction of extensions G F2(Q, P) and matrices M can be summarized into three steps
that we exhibit through a typical example.

Step1: initiation. The field G F2(R) of the AES is created. Choose a root ξ of Q(z) :=
z4 + z + 1 in G F2(R). For example:

ξ := ζ 6 + ζ 4 + ζ 3 + ζ 2 + 1.

Step 2: choice of P(z). Take P(z) := z2 + z + θ11 and find, according to Sect. 4.4, a root γ
of P(z) in G F2(R). For example:

γ := ζ 4 + ζ 3 + ζ 2 + ζ + 1.
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Step 3: computation of Mξ,γ . Compute in G F2(R) each element ξνγ ε (0 ≤ ν ≤ 3, 0 ≤ ε ≤ 1)
of the basis Lξ,γ . One gets the columns Σ−1(ξνγ ε) of Mξ,γ . In our example

Mξ,γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 1 1 0 0
1 1 1 0 1 1 1 0
0 0 1 0 1 1 0 0
0 0 1 1 0 0 1 0
1 1 0 1 1 0 1 0
1 0 0 1 1 0 1 0
1 1 0 1 0 0 0 0
0 0 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Now, taking into account the standard basis Ξθ,α , Eq. 6 becomes

SubBytes(y) = ΣY ′ + δ (8)

with y = ΣY and Y ′ = ΩMξ,γ Ξ
−1
θ,α

([Ξθ,αM−1
ξ,γ Y ]−1

)
. The term [Ξθ,αM−1

ξ,γ Y ]−1 corre-

sponds to the computation of the inverse of μ−1(y) in G F2(Q, P).

5 Masking norm distribution

We analyze the distribution of the norm values occurring in Eq. 3 and its consequence on the
side-channel leakage from a theoretical point of view.

5.1 Random TFC and distribution of norms

We leave out of our study the element 0 ∈ G F(28) as our technique provides no randomizing
effect for this value. Hence this proposal needs to be applied jointly with an additive masking
method.

The most sensitive part of the SubBytes using Eq. 4 is the inversion in G F2(Q) that cor-
responds to the inverse of the norm of elements x in G F2(Q, P). Consequently, we have to
study the distribution of NP (μ

−1(y)) (y ∈ G F2(R)) in all mappings μ or, equivalently, to
study the distribution of N (τ y)where N (·) is the norm from G F(28) to the subfield G F(24)

and τ belongs to the Galois group of G F(28). To this aim we recall the following classical
but important algebraic properties. The norm map N (·) is a surjective homomorphism with
#N−1(1) = 17 and N (y) = y17. Moreover, N (·) commutes with any automorphisms τ . It
follows that the partition of G F(28)∗ in sets N−1(x) (x ∈ G F(24)∗) is itself partitioned into
orbits of the Galois group action on G F(24)∗, which are the so-called conjugacy classes.
There are five such classes denoted S1, . . . , S5. More precisely, letχ be any primitive element
of G F(24), then

– S1 = {1} and N (y) = 1 for 17 values y in G F(28),
– S2 = {χ5, χ10} and N (y) ∈ S2 for 34 values y in G F(28),
– S3 = {χ, χ2, χ4, χ8} and N (y) ∈ S3 for 68 values y in G F(28),
– S4 = {χ3, χ6, χ9, χ12} and N (y) ∈ S4 for 68 values y in G F(28),
– S5 = {χ7, χ11, χ13, χ14} and N (y) ∈ S5 for 68 values y in G F(28).

The distribution of N (y) for all y ∈ G F(28) and for all mappings is presented in Fig. 1.
These results imply that given an element y ∈ G F(28), we can expect, at most, four dif-

ferent values for its norm. While the number of representations of y grows with the number
of considered conversion matrices M , the bottleneck is placed in the maximal size of the
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Fig. 1 The figure represents the number of elements of G F(28) in each conjugacy class S1, . . . , S5 of values
of the norm considering all possible mappings

sets Si . Furthermore, this maximal size can be achieved with each one of the 64 polynomials
P(x) and, due to the fact that σ 4 is the identity on G F(24), only four of the eight primitive
elements γ give the maximal sets Si for any given P(x). These observations are visualized
in Sect. 6 with the help of an experimental analysis of the side-channel leakages.

5.2 Improving the distribution of the norm

From a given y in G F2(R), our aim is to maximize the number of norm values computed
from various representations of y in fields G F2(Q, P). We have just exposed that random-
izing the TFC only gives, at most, four different norm values issuing from y, i.e., the norms
NP (μ

−1(y)) belong, independently of P(z) and μ, to one of the above sets Si that has a
maximal size of four elements. We would like to increase the set of possible outputs so that
norm values better spread over G F2(Q)∗. To this goal in mind, we propose two masking
techniques and explain their respective advantages.

Method using the order of field elements
We start from the fact that G F(28)∗ is equal to the direct product of its cyclic subgroups C3,

C5 and C17, of order 3, 5 and 17 respectively. In addition, ker(N (·)) = C17 and G F(24)∗
is the direct product of its subgroups of orders 3 and 5. The Galois group of G F(28) act-
ing on G F(28)∗ lets the cyclic groups invariant and the conjugacy classes are in one-to-
one correspondence with the orbits of the Galois group action on the set of orders ord(y)
(y ∈ G F(28)∗). Finally, the restriction of the norm map N (·) on G F(24)∗ corresponds to the
Frobenius automorphisms. It follows the following description of the above sets Si in terms
of orders:

– S1 = {y ∈ G F(28) ; ord(y) ∈ {1, 17}} (= C17),
– S2 = {y ∈ G F(28) ; ord(y) ∈ {3, 51}},
– S3 = {y ∈ G F(28) ; ord(y) ∈ {15, 255}},
– S4 = {y ∈ G F(28) ; ord(y) ∈ {5, 85}},
– S5 = {y ∈ G F(28) ; ord(y) ∈ {15, 255}}.
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In order to modify the norm NP (μ
−1(y)) to be in different sets Si , we modify x = μ−1(y)

to change the order. In fact, just before the computation of the norm of x , if we knew its
order, we could multiply it by an element w of an adequate order so that the resulting norm
belongs to another class of conjugacy. However in practice, we do not easily get the order of
x . Moreover, this method may not be adequate as the choice ofw would be dependent on the
value of x , hence of y, so that side-channel information could be exploited. It is then better
to choosew at random. Let Oi denote the set of elements of order i in G F(28). Let O ′ be the
union of O3 with a set of two elements in O17, hence |O ′| = 4. Notice that |O5| = 4. Now
the mask value w will be taken of the form uv with (u, v) chosen at random in O ′ × O5.

Our proposition for the inversion step in G F2(Q, P), with P(z) fixed, consists in the
following operations.

Inversion Masking Algorithm

Initialization

1. Precompute a matrix M0 = Mξ,γ , the matrices Mk = Sk M0, k = 1, 2, 3 and their
inverses; each matrix Mk determines an isomorphism μk : G F2(Q, P) → G F2(R)
with μk = σ k ◦ μ0.

2. Precompute NP (u) and NP (v) for all u ∈ O ′ and v ∈ O5.

Randomization

3. Randomly choose a conversion matrix Mr from {M0, . . . ,M3}.

4. Randomly choose u in O ′ and v in O5.

Input y output y−1

5. Compute x = μ−1
k (y) = Ξθ,αM−1

r Σ−1 y = aα + a′ and compute x ′ := xuv in
G F2(R).

6. Compute the norm NP (x ′), then its inverse NP (x ′)−1 in G F2(Q).

7. Compute the right norm inverse NP (x)−1 = NP (x ′)−1 NP (u)NP (v).

8. Once the norm inverse is computed, compute the inverse x−1 in G F2(Q, P) using
Eq. 4.

9. Output y−1 = ΣMrΞ
−1
θ,α(x

−1).

Remark 3 In the case of an actual AES implementation, matrices and norm values com-
puted during the initialization phase are stored once and for all before starting any AES
computation.

The choice of the sets O ′ and O5 seems relevant. We compute for each y ∈ G F2(R) all
possible norm values using our randomization technique and consider the number of distinct
norms we can obtain for each given y. The results are presented in Fig. 2. We clearly see
an improvement. Indeed, using only the randomization between four mappings elements of
G F2(R) to G F2(P, Q) we have at most four possible norms. If we add the multiplication
by elements of O ′ and O5, for each y ∈ G F2(R), these values belong to G F2(Q) and are
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Fig. 2 Repartition of the values NP (μ
−1
k (y)) and NP (μ

−1
k (y)uv) y ∈ G F(28) for k, u and v taken from

appropriated sets. We compare a random TFC with four mappings (RTFC 4) and the same construction using
in addition the masking method 1 (RTFC 4 + Method 1)

given by the formula NP ((σ ◦μ0)
−k(y)uv) with (k, u, v) ∈ {0, . . . , 3} × O ′ × O5. The sets

O3, O5 and O17 are invariant under the Frobenius automorphism which also commutes with
NP . Moreover NP (O17) = {1}, NP (O ′) = C3 and NP (O5) = O5. These facts imply that
the set of norm values we obtain for each y is given by

E(y) := {σ k(NP (x))uv ; (k, u, v) ∈ {0, . . . , 3} × C3 × O5}
with x = μ−1

0 ◦ σ 4(y). If NP (x) ∈ C3 (order 1 or 3) then E(y) is the set C3.O5, product in
G F2(Q)∗ of the elements in C3 by the elements of order 5, consequently #E(y) = 3×4 and
going back to G F2(R) we get 3 × 17 elements y that give rise to 12 norm values. If NP (x)
is of order 5 or 3 × 5 then E(x) is the subgroup C3.C5 (= G F2(Q)∗). Hence #E(y) = 15
and there are (ϕ(5)+ ϕ(15))× 17 = 204 elements y which are involved.

A full masking method
In the above proposition, if we replace O ′ by C3 and O5 by C5 then the norm NP (μ

−1
k (y)

uv) can take all the values of G F2(Q)∗. This advantage is not significant with respect to our
experimentation performing side-channel attacks whose results are given in the next section.
In addition, during the random choices we have to prevent a possible bias due to the fact that
the cardinality of C3 and C5 are not a power of 2.

5.3 Implementation

As previously mentioned, both our methods are based on multiplicative maskings. It is well
known that this kind of maskings does not thwart zero input attacks. In order to solve this
problem, one should find a conversion function that maps additive maskings into multipli-
cative ones. We propose to use a Dirac function to treat this issue. This solution has recently
been introduced and analysed by Genelle et al. [11,12].

If we consider a classical implementation of the SubBytes using the tower field technique,
the memory overhead of our method is then very small. For the two masking methods pro-
posed we need to store four conversion matrices Mk and four corresponding inverse matrices
M−1

k . A matrix is stored in 8 bytes, hence those eight matrices are stored in 64 bytes. The
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elements of the sets O ′ and O5, for the first method, and of C3 and C5 for the second, consist
in 8 bytes. We also need to precompute NP (u) and NP (v) for u ∈ O ′, v ∈ O5 for the first
method, and u ∈ C3, v ∈ C5 for the second. As the polynomial P is modified by the choice
of a matrix Mk , we have to precompute NP (u) for the four polynomials P fixed implicitly.
The first method requires to store 4 × 4 = 16 bytes for NP (u), u ∈ O ′ and also 16 bytes
for NP (v), v ∈ O5, hence 32 bytes in total. The second method needs 3 × 4 = 12 bytes
for NP (u), u ∈ C3 and 5 × 4 = 20 bytes for NP (v), v ∈ C5, hence also 32 bytes in total.
Both methods also have a computational overhead of two multiplications in G F(28) and two
multiplications in G F(24).

6 Experimental analysis of the countermeasure

Let K be a random variable representing a part of the secret. Let X be a random variable rep-
resenting a part of the input, or output, of the cryptographic algorithm. In our context, K and
X are binary strings. Suppose an attacker wants to target an intermediate value computed with
the function F(·) that takes as parameters (X, K ). Let L be a random variable representing
the side-channel leakage generated by the computation of F(X, K ). In practice, the attacker
is only able to obtain n realizations of the random variable L , denoted VL = (l1, . . . , ln), as
he inputs n different values of X , denoted VX = (x1, . . . , xn). Using a distinguisher func-
tion D, he combines these two vectors plus an hypothesis on the value of the secret k′. If
the distinguisher D is relevant and if the leakage vector VL brings enough information on
F(X, K ), then the correct value k taken by K can be recovered. In the literature, a certain
amount of work has been done for creating a model for F(X, K ). For example, it has been
proposed to consider the Hamming weight of the output of F [22], the Hamming distance
[5] or simply its value [13]. The choice of a leakage model should be decided depending
on the considered platform attacked. Other researches were conducted on the distinguisher
function D that plays a fundamental role in the attack. Depending on its choice, the function
is able to extract more or less information from the side-channel leakages. We cite some of
the most used functions: the simplified T-Test proposed by Kocher et al. [16], the Pearson
correlation factor [5], the mutual information [13]. It has been shown by Mangard et al. [19]
and Doget et al. [10] that univariate side-channel attacks are equivalent in regard to the choice
of distinguisher, given that they are provided with the same information about the leakages.
We consider here the Pearson correlation factor as the distinguisher function D [5]. It is
one of the most used attack on most embedded devices. The side-channel attack using this
distinguisher is called correlation power analysis (CPA). The power consumption of most
devices was observed to be closely linear in the Hamming weight of the processed data at a
given time [5,21]. Hence the use of the Pearson factor is particularly well suited as it records
linear relationships between variables.

A side-channel attack, given a vector VL of size n, outputs a vector containing the key
candidates sorted according to the test result given by D. Let Rn = [

k′
1, . . . , k′|K |

]
being this

sorted vector, the most likely key candidate being k′
1. A success rate [35] of order ν is the

probability that the correct key is among the ν-th first candidates found by the side-channel
attack. A success function of order ν can then be defined as: Sν(Rn) = 1 if k ∈ [

k′
1, . . . , k′

ν

]
,

else Sν(Rn) = 0. The success rate of order ν of a side-channel attack A is then defined as

SuccνA (n) = Pr [Sν(Rn) = 1] .
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In practice, this probability is only estimated by performing m times a side-channel attack
A and computing the mean. We can only consider a success rate of order 1 as a meaningful
metric of the efficiency of a side-channel attack. Another convenient metric is the guessed
entropy [35]. It measures, in our context, the average number of key candidates to test, after
a side-channel attack has been performed, in order to find the secret key. If we keep the same
notations as before, let G(Rn) be the function that outputs the rank of the correct key in the
sorted vector of key candidates Rn . The guessed entropy of a side-channel attack A is then
defined as:

G EA (n) = E(G(Rn)),

where E denotes the expectation. As with the previous metric, in practice, it is evaluated by
performing m times the side-channel attack.

We evaluate our propositions on a software AES implementation on 8-bit architecture and
place the attacker in the best possible scenario. We use a simulator of power consumption to

Fig. 3 Side-channel attacks results using the guessed entropy and first-order success rate metrics from simu-
lated curves. Comparison between AES implementations: basic using a TFC, using a randomized construction
with 4 mappings (RTFC 4), using a randomized construction with 512 mappings (RTFC 512) and a randomized
construction with 4 mappings combined with the masking method 1 (RTFC 4 + Method 1)
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obtain the power curves. This simulator outputs, at each cycle, the Hamming weight of the
processed data. The power consumption is then perfectly linear in the Hamming weight of
the data. The possible measurement noise is eliminated.

As previously mentioned, the sensitive part of the SubBytes operation in a TFC is the
inversion, hence, the computation of NP (μ

−1
k (y)uv) (see Inversion Masking Algorithm,

step 6). In order to compare the effect of our propositions, we first consider a TFC with a
fixed primitive polynomial P(z) of the form z2 + z + λ and we arbitrarily fix a mapping.
This is simply denoted ‘TFC’ in Fig. 3. Then, we choose four mappings constructed with
four of the eight primitive elements in G F(28) such that we only take elements without their
conjugate over G F2(Q). This implementation is denoted ‘RTFC 4’ (Random TFC with four
mappings). The observation of Sect. 5.1 is tested practically with an implementation using
all possible mappings for a total of 512. This implementation is denoted ‘RTFC 512’. Finally,

Fig. 4 Side-channel attacks results using the guessed entropy and first-order success rate metrics from imple-
mentations on an AVR 8-bit ATmega 2561 processor. Comparison between AES implementations: basic using
a TFC, using a randomized construction with four mappings (RTFC 4) and a randomized construction with
four mappings combined with the masking method 1 (RTFC 4 + Method 1)
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we examine a random TFC combined with our first masking method (see Inversion Masking
Algorithm) which is denoted ‘RTFC 4 + Method 1’.

The side-channel resistance of each implementation is evaluated by applying the metrics
first-order success rate and guessed entropy defined previously. In order to have metrics
estimated properly, we perform m = 20 times each side-channel attack on n = 500 mea-
surements of power consumptions. The results are presented in Fig. 3.

We first notice that the AES implementation using composite field arithmetic without
masking is broken with around 50 power curves. A random TFC gives a clear improvement
of the side-channel resistance. Both guessed entropy and success rate metrics indicate that
an attacker would need six times more curves compared to the unprotected AES. We remark
that a random construction using only four mappings is as resistant as one using every pos-
sible mappings. It confirms the properties of the norm described in Sect. 5.1. Finally, the
implementation using our masking method combined with a random TFC clearly gives the
best results. We note that both masking methods proposed in Sect. 5.2 give similar attack
results. For a small memory and computational overhead our propositions provides a clear
improvement of the side-channel resistance of a AES using TFC.

We also evaluate different AES implementations on an AVR 8-bit ATmega 2561 proces-
sor [2] running at 16 MHz. We perform m = 4 times each side-channel attacks on n = 5,000
power consumption measurements. In Fig. 4, we compare an AES using basic TFC with our
propositions ’RTFC 4’ and ’RTFC4 + Method 1’. The practical implementation confirms our
simulated results and clearly shows the gain obtained from our last solution.

7 Conclusion

In this paper, we propose a masking technique for SubBytes operations in AES using a TFC.
The resulting implementation of AES is particularly well suited for hardware. The SubBytes
is then performed in a subfield of the original field of AES for efficiency and security reasons.
This TFC can be randomly chosen in order to improve security against side channel attacks.
Our study shows that the different representations of an element of the field produce at most
four distinct norms. We then analyze the relation between the order of an element and its
norm and extend the method so that the number of norms may be optimal for field elements.
Experimental analysis shows that our method is both efficient and resistant against first-order
side-channel attacks.
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